
Blockchains in the lens of BFT
Dahlia Malkhi

Diem Association and Novi



State-Machine-Replication (SMR) 
with 

Byzantine Fault Tolerance (BFT)

SIFT [1976]

A mission critical spacecraft control system 
is crafted with redundant sensors and 
compute units

Sensors and compute units might fail 
arbitrarily

Control commands are exerted by 
consensus voting among units

Double Spend [2008]

Money in its digital form requires keeping 
a ledger of transfers

Users might try to duplicate coins or 
double-spend their balance

This is easy to prevent if there is a trusted 
entity maintaining a centralized ledger

SMR forms agreement on a ledger among 
mistrusting parties



State-Machine-Replication (SMR) 
with 

Byzantine Fault Tolerance

Byzantine Generals [LPS 1980]

A mission critical spacecraft control system 
is crafted with redundant sensors and 
compute units

Sensors and compute units might fail 
arbitrarily

Control commands are exerted by 
consensus voting among units

Double Spend [2008]

Money in its digital form requires keeping 
a ledger of transfers

Users might try to duplicate coins or 
double-spend their balance

This is easy to prevent if there is a trusted 
entity maintaining a centralized ledger

SMR forms agreement on a ledger among 
mistrusting parties



State-Machine-Replication (SMR) 
with 

Byzantine Fault Tolerance

SIFT [1976]

A mission critical spacecraft control system 
is crafted with redundant sensors and 
compute units

Sensors and compute units might fail 
arbitrarily

Control commands are exerted by 
consensus voting among units

Double Spend [2008]

Money in its digital form requires keeping 
a ledger of transfers

This is easy to prevent if there is a trusted 
entity maintaining a centralized ledger

Users might try to duplicate coins or 
double-spend their balance

SMR forms agreement on a ledger among 
mistrusting parties



State-Machine-Replication (SMR) 
with 

Byzantine Fault Tolerance

Byzantine Generals [LPS 1980]

A mission critical spacecraft control is 
crafted with redundant sensors and 
compute units

Control commands are exerted by 
consensus voting among units

Nakamoto Consensus [N2008]

Money in its digital form requires keeping 
a ledger of transfers

This is easy to solve if there is a centralized 
trusted entity

SMR forms agreement on a ledger among 
mistrusting parties



Outline

What are we trying to solve

Classical SMR results

Enter Partial Synchrony

Bitcoin and Nakamoto Consensus

Scaling BFT



Untrusted/unreliable individual component, trusted/reliable 
service as whole 

Core approach: A single server modeled as a deterministic 
state-machine, then replicated for fault tolerance

Linearizability [HW1990]: Correct execution modeled as a 
sequential state-machine, receive client requests, 
execute, store output, return response 

Replicas have three key functions: Ordering, Execution, 
Store 

Often, the same parties (validators, nodes, replicas, ..) 
provide all functions. 

Authenticated store: succinct proofs of membership

State-Machine-Replication (SMR) [L1978, S1990]



Untrusted/unreliable individual component, trusted/reliable 
service as whole 

Core approach: A single server modeled as a deterministic 
state-machine, then replicated for fault tolerance

Linearizability [HW1990]: Correct execution modeled as a 
sequential state-machine, receive client requests, 
execute, store output, return response 

Replicas have three key functions: Ordering, Execution, Store 

Often, the same parties (validators, nodes, replicas, ..) 
provide all functions. 

Authenticated store: succinct proofs of membership

State-Machine-Replication (SMR) [L1978, S1990]



The main building block for SMR is log replication

It is reducible to a sequence of single-shot Consensus decisions 

Much of the academic literature focuses on the Consensus problem, 
including important impossibilities and lower bounds

There are differences: receiving request from clients and sending output to 
them changes what is considered valid as output, and when is it solvable

SMR practical solution optimize a sequence of single-shot decisions with a 
(cheaper) steady-state leader regime and a (more complex) view-change

SMR and Consensus



Known set of N validators

Safety - validators store and execute the same log of transactions

Liveness - every client request is eventually executed by validators

(External) Validity - transactions are (signed) requests by clients

SMR Problem Model 



Communication model: modeled as an adversary that 
controls the network

Synchronous model – there is a known bound ∆ on 
message transmission delays imposed by the adversary 

Asynchronous model – the adversary can cause 
unbounded delays

Partial synchrony model – there is Global Stabilization 
Time (GST) after which there is a known bound ∆ on 
message transmission delays imposed by the adversary

Fault Model



Decentralization, trust(less) systems and the Byzantine faults: 
modeled as an adversary that corrupts validators 

- Fraction of faults: threshold, probabilistic, power, 
incentives  

- Failure modes: crash, omission, Byzantine
- Authentication: confidential messages, signatures

Fault Model



Outline

What are we trying to solve

Classical SMR results

Enter Partial Synchrony

Bitcoin and Nakamoto Consensus

Scaling BFT



Which model should I use?

Under asynchrony:
● [FLP 1985] Liveness is not guaranteed against even a single 

failure, and a log replication algorithm must have (under 
network duress) non-terminating executions

Under partial synchrony:
● [Folklore] Under network transmission delays, Consensus 

requires F < N/2.
● [DLS 1988] Under network transmission delays, Byzantine 

Consensus requires F < N/3.

Under synchrony:
● [FLM 1985] If there is no public key setup, Byzantine 

Consensus requires F < N/3
● [Folklore] Under omissions faults, Consensus requires F < N/2
● [AT 1999] Consensus must have executions with F+1 rounds
● [DR 1982] Consensus must have executions with a quadratic 

number of messages. 



Outline

What are we trying to solve

Classical SMR results

Enter Partial Synchrony

Bitcoin and Nakamoto Consensus

Scaling BFT



Practical BFT Settings [LPS 1982, DLS 1988, L1989-1998, CL1999]

Partial synchrony model

N = 3F+1 permissioned/known validators

PKI enables validators to sign messages

Adversary controls up to F validators

Focus on a single agreement decision



Classical BFT SMR

Super quadratic communication

Error-prone

Developer-unfriendly 

J. Mickens, 2013



BFT in the Lens of Blockchains

Simple and transparent 

Blocks carry client-requests + signed-references (chaining)

Chain rules to participate and to commit finality



Steady leader protocol:

Broadcast blocks to validators 
(e.g., via gossip)

First round: 2F+1 signed proposal-refs to prepare

Second round: 2F+1 signed prepare-refs to commit

Only the head of chain committed

Omitted: chaining, pipelining

PBFT[CL1999] in the Lens of Blockchains



View-change protocol (by new leader):

PBFT in the Lens of Blockchains



View-change protocol (by new leader):

Broadcast justified proposal carrying 2F+1 signed 
prepare-refs

Safety: a leader cannot hide a previous commit

- F may be nil
- F may lie
- At least one must refer to prepare if it has been committed

Liveness: a leader can elicit 2F+1 latest-prepare refs

PBFT in the Lens of Blockchains



PBFT in the Lens of Blockchains

Why 2F+1?



PBFT in the Lens of Blockchains

Why two rounds?

Imagine a one-round protocol



PBFT in the Lens of Blockchains

Why two rounds?

Imagine a one-round protocol

It can prevent equivocation by the first 
leader



BFT in the Lens of Blockchains 

Why two rounds?

Imagine a one-round protocol

It can prevent equivocation by the first 
leader

But it cannot convince a new leader of a 
commit outcome

Special case: Leader itself can commit 
after a single round [DLS1988]



How do we measure complexity? 

Count cryptographic validations

PBFT Complexity



How do we measure complexity? 

Count cryptographic validations

PBFT Complexity

Steady leader protocol:

Broadcast proposal to participants (e.g., via gossip)

- O(N) to validate leader proposal

First round: 2F+1 signed proposal-refs to prepare

- O(N x N) to validate leader prepare carrying 
O(N) signatures on propose-refs

Second round: 2F+1 signed prepare-refs to commit

- same



How do we measure complexity? 

Count cryptographic validations

PBFT Complexity

Steady leader protocol:

Broadcast proposal to participants (e.g., via gossip)

- O(N) to validate leader proposal

First round: 2F+1 signed proposal-refs to prepare

- O(N x N) to validate leader prepare carrying 
O(N) signatures on propose-refs

Second round: 2F+1 signed prepare-refs to commit

- same

View-change protocol (by new leader):

Broadcast justified proposal : 
2F+1 signed prepare-refs (possibly different), 
each prepare contains 2F+1 signatures on 
propose-refs 

- O(N x N2) to validate leader proposal with:
O(N) signatures on 
O(N) signed propose-refs 

Cascading view-changes:

- O(N) x O(N3)  



How do we measure complexity? 

Count cryptographic validations

Vote Aggregation [CKPS2001] and SBFT [GA+2019] 

Steady leader protocol:

Broadcast proposal to participants (e.g., via gossip)

- O(N)/O(N) to validate leader proposal

First round: 2F+1 signed proposal-refs to prepare

- O(N x N)/O(N) to validate leader prepare 
carrying O(N)/O(1-aggregate) signatures on 
propose-refs

Second round: 2F+1 signed prepare-refs to commit

- same

View-change protocol (by new leader):

Broadcast justified proposal : 
2F+1 signed prepare-refs (possibly different), 
each prepare contains 2F+1 signatures on 
propose-refs 

- O(N x N2)/O(NxN) to validate leader proposal 
with:
O(N) (non-aggregate-able) signatures on 
O(N)/O(1-aggregate) signed propose-refs 

Cascading view-changes:

- O(N) x O(N3)/O(N) x O(N2)  



Practical BFT SMR for Partial Synchrony

LPS
1982

DLS
1988

PBFT
1999

Safe against F < N/3 byz faults 👍 👍 👍

Safe against asynchrony 👎 👍 👍

Number of messages to 
consensus decision

poly poly quadratic*

Number of messages to rotate 
leader

poly poly quadratic

Network speed N/A 👎 👍

*Can be linear with threshold-cryptography



Outline

What are we trying to solve

Classical SMR results

Enter Partial Synchrony

Bitcoin and Nakamoto Consensus

Scaling BFT



NYTimes piece on Bitcoin [Andreesen, 2014]: “Bitcoin is the first 
practical solution to a longstanding problem in computer 
science called the Byzantine Generals Problem.” 

Nakamoto Consensus (NC) is based on two mechanisms.

Proof-of-work 
“Pricing via Processing or Combatting Junk Mail” [DN92]

This creates scarcity, a new coin can be minted every X 
time period

Hash chains 
“How to timestamp a Digital Document” [HS92] 
This creates an incentive for agreement, a coin has value 
only if it is part of the longest existing chain  

Bitcoin/Nakamoto Consensus [N2008]



Nakamoto Consensus (NC) is based on two mechanisms.

Proof-of-work 
“Pricing via Processing or Combatting Junk Mail” [DN 1992]

This creates scarcity, a new coin can be minted every X 
time period

Hash chains 
“How to timestamp a Digital Document” [HS92] 
This creates an incentive for agreement, a coin has value 
only if it is part of the longest existing chain  

Bitcoin/Nakamoto Consensus



Nakamoto Consensus (NC) is based on two mechanisms.

Proof-of-work 
“Pricing via Processing or Combatting Junk Mail” [DN92]

This creates scarcity, a new coin can be minted every X 
time period

Hash chains 
“How to timestamp a Digital Document” [HS 1992] 
This creates an incentive for agreement, a coin has value 
only if it is part of the longest existing chain  

Bitcoin/Nakamoto Consensus



Nakamoto Consensus (NC) is based on two mechanisms.

Proof-of-work 
“Pricing via Processing or Combatting Junk Mail” [DN92]

This creates scarcity, a new coin can be minted every X 
time period

Hash chains 
“How to timestamp a Digital Document” [HS 1992] 
This creates an incentive for agreement, a coin has value 
only if it is part of the longest existing chain 

Putting them together 

Puzzle solution must becomes part of the chain for 
mining/transfers to have effect  

 

Bitcoin/Nakamoto Consensus



In order to participate in NC, a validator needs to mine blocks and 
append them to the chain. 

NC is based on the following three rules:

1. Longest fork wins. A validator adopts the longest proof-of-work 
(PoW) chain to its knowledge (breaking ties arbitrarily) and 
attempts to mine a new block that extends this longest chain.

2. Propagation. Upon adopting a new longest chain, either through 
mining or by receiving from others, a validator broadcasts the 
newly acquired block(s);

3. k-depth commit. A validator commits a block if it is buried at 
least k blocks deep in the longest chain adopted by the validator. 
Here, k is a security parameter (6 is common in practice) that 
controls the probability of incorrect commit 

Bitcoin/Nakamoto Consensus



In order to participate in NC, a validator needs to mine blocks and 
append them to the chain. 

NC is based on the following three rules:

1. Propagation. A validator broadcasts the each new block

2. Longest fork wins. A validator adopts the longest chain to its 
knowledge (breaking ties arbitrarily) and attempts to mine a new 
block that extends this longest chain.

3. k-depth commit. A validator commits a block if it is buried at 
least k blocks deep in the longest chain

Bitcoin/Nakamoto Consensus



In order to participate in NC, a party needs to mine blocks and append 
them to the chain. 

NC is based on the following three rules:

1. Propagation. A validator broadcasts the each new block

2. Longest fork wins. A validator adopts the longest chain to its 
knowledge (breaking ties arbitrarily) and attempts to mine a new 
block that extends this longest chain.

3. k-depth commit. A validator commits a block if it is buried at 
least k blocks deep in the longest chain 

Bitcoin/Nakamoto Consensus



When is NC Safe?
[R2019, N2021]



NC In the Len of BFT

Imagine a round-based protocol among a set of N validators, 
with F Byzantine

In each round, one validator selected uniformly at random to 
broadcast a proposal/vote

Honest validators extend the longest chain they know

Byzantine validators may extend any chain they choose 

The best attack strategy is to maintain their own chain 
k levels deeps and then expose it 

If 49% are Byzantine then the bad chain will be longer than 
the good chain with probability exponentially small in k 



NC In the Len of BFT

Imagine a round-based protocol among a set of N validators, 
with F Byzantine

In each round, one validator selected uniformly at random to 
broadcast a proposal

Honest validators extend the longest chain they know

Byzantine validators may extend any chain they choose 

The best attack strategy is to maintain their own chain 
k levels deeps and then expose it 

If 49% are Byzantine then the bad chain will be longer than 
the good chain with probability exponentially small in k 



NC In the Len of BFT
In NC, there are no rounds and no known set of participants

Mining is modeled as a Possion process with expected interval g

The adversary has power P < 50% to mine

We mark the arrivals of the process h1, b2, h3, h4, b5, h6, b7, ..

A proposal by a good validator takes less than ∆ to propagate

since g ≫ ∆ we ignore the possibility of two honest arrivals 
within < ∆ 

A fork succeeds if there is a segment with more than k Byzantine 
arrivals and less than k honest arrivals



Outline

What are we trying to solve

Classical SMR results

Enter Partial Synchrony

Bitcoin and Nakamoto Consensus

Scaling BFT



Practical BFT SMR for Partial Synchrony

LPS
1982

DLS
1988

PBFT
1999

Safe against F < N/3 byz faults 👍 👍 👍

Safe against asynchrony 👎 👍 👍

Number of messages to 
consensus decision

poly poly quadratic*

Number of messages to rotate 
leader

poly poly quadratic

Network speed N/A 👎 👍

*Can be linear with threshold-cryptography



Practical BFT SMR for Partial Synchrony

LPS
1982

DLS
1988

PBFT
1999

Casper
2017

HotStuff
2019

Safe against f < n/3 byz faults 👍 👍 👍 👍 👍

Safe against asynchrony 👎 👍 👍 ? 👍

Number of messages to 
consensus decision

poly poly quadratic* quadratic* linear

Number of messages to rotate 
leader

poly poly quadratic quadratic* linear

Network speed N/A 👎 👍 👎 👍

*Can be linear with threshold-cryptography



HotStuff [YM+ 2019]

Recall, one round prevents equivocation



HotStuff [YM+ 2019]

Recall, one round prevents equivocation

Two rounds guarantee there is at most one prepare per leader view



HotStuff [YM+ 2019]

One round prevents equivocation

Two rounds guarantee there is at most one prepare per leader view

If there was a commit, even a single validator can tell a new 
leader a prepare which might have committed 
and is safe to propose



HotStuff [YM+ 2019]

One round prevents equivocation

Two rounds guarantee there is at most one prepare per leader view

If there was a commit, even a single validator can tell a new 
leader a prepare which might have committed
and is safe to propose

If there was no commit, a leader can prove by including 2F+1 
attestations they did not vote prepare

For liveness, even if a validator ref’ed a higher prepare,
it must accept the leader’s proposal because it carries a proof



HotStuff [YM+ 2019]

One round prevents equivocation

Two rounds guarantee there is at most one prepare per leader view

If there was a commit, even a single validator can tell a new 
leader what might have committed and is safe to propose

What if the leader sends only one prepare? (subtle)

If a validator has a higher prepare, it cannot trust the leader and 
abandon it

Option-1 [Casper, VG 2016]: leader must wait ∆ (maximal network 
delay)

Option-2: Add a round



HotStuff [YM+ 2019]

One round prevents equivocation

Two rounds guarantee there is at most one prepare per leader view

If there was a commit lock, even a single validator can tell a new 
leader a prepare which might have committed locked 
and is safe to propose

Three rounds

  



HotStuff [YM+ 2019]

One round prevents equivocation

Two rounds guarantee there is at most one prepare per leader view

If there was a commit, even a single validator can tell a new 
leader what might have committed and is safe to propose

Three rounds

If a validator has a higher prepare, it can trust the leader and 
abandon it  



HotStuff [YM+ 2019]

One round prevents equivocation

Two rounds guarantee there is at most one prepare per leader view

If there was a commit, even a single validator can tell a new 
leader what might have committed and is safe to propose

Three rounds

If a validator has a higher prepare, it can trust the leader and 
abandon it  



HotStuff [YM+ 2019]

One round prevents equivocation

Two rounds guarantee there is at most one prepare per leader view

If there was a commit, even a single validator can tell a new 
leader what might have committed and is safe to propose

Three rounds

It works!

If a validator has a higher prepare, it can trust the leader and 
abandon it 

If a validator has a higher lock, an honest leader cannot hide the 
highest prepare

  



HotStuff [YM+ 2019]

One round prevents equivocation

Two rounds guarantee there is at most one prepare per leader view

If there was a commit, even a single validator can tell a new 
leader what might have committed and is safe to propose

Three rounds

It works!

If a validator has a higher prepare, it can trust the leader and 
abandon it 

If a validator has a higher lock, an honest leader cannot hide the 
highest prepare

  



An evolution of BFT consensus protocols

PBFT
1999

Casper
2017

HotStuff
2019

Safe against f < n/3 byz faults 👍 👍 👍

Safe against asynchrony 👍 ? 👍

Number of messages to 
consensus decision

quadratic* quadratic* linear

Number of messages to rotate 
leader

quadratic quadratic* linear

Network speed 👍 👎 👍

*Can be linear with threshold-cryptography



An evolution of BFT consensus protocols

PBFT
1999

Casper
2017

HotStuff
2019

Safe against f < n/3 byz faults 👍 👍 👍

Safe against asynchrony 👍 ? 👍

Number of messages to 
consensus decision

quadratic* quadratic* linear

Number of messages to rotate 
leader

quadratic quadratic* linear

Network speed 👍 👎 👍

Rounds to commit 2 2 3

*Can be linear with threshold-cryptography



An evolution of BFT consensus protocols

PBFT
1999

Casper
2017

HotStuff
2019

DiemBFT
2021

Safe against f < n/3 byz faults 👍 👍 👍 👍

Safe against asynchrony 👍 ? 👍 👍

Number of messages to 
consensus decision

quadratic* quadratic* linear linear

Number of messages to rotate 
leader

quadratic quadratic* linear linear + ε

Network speed 👍 👎 👍 👍

Rounds to commit 2 2 3 2

*Can be linear with threshold-cryptography


